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We study the transport of a quantum particle through square lattices of various sizes by employing the
tight-binding Hamiltonian from quantum percolation. Input and output semi-infinite chains are attached to the
lattice either by diagonal point-to-point contacts or by a busbar connection. We find resonant transmission and
reflection occurring whenever the incident particle’s energy is near an eigenvalue of the lattice alone(i.e., the
lattice without the chains attached). We also find the transmission to be strongly dependent on the way the
chains are attached to the lattice.
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Quantum interference effects are important in the trans-
port of particles in mesoscopic systems. Consider, for ex-
ample, a particle traversing a square array of quantum dots.
Assume the distance between dots is close enough so that the
particle can hop between nearest-neighbor dots. Considering
only the effect of quantum interference, will the particle go
through the lattice? Classically, the particle has a multitude
of paths to go from one end of the lattice to the other, de-
pending on the size of the lattice. Quantum mechanically,
however, constructive or destructive interference can occur
because of the different path lengths. Thus, the transmission
of a particle is not assured even when there are classically
well-defined paths for it to go through the lattice. In this
work we investigate the effects of quantum interference in
the transport of a particle in discrete and finite square lat-
tices.

We consider the particle to be governed by the tight-
binding Hamiltonian from quantum percolation[1,2]. This
Hamiltonian has the form

H = o
ki j l

vi jsuilk j u + u jlki ud, s1d

whereuil and u jl represent tight-binding basis functions cen-
tered on sitesi and j , respectively, andvi j =1 if i and j are
nearest neighbors andvi j =0 otherwise. The sum is only over
nearest neighbors. In quantum percolation the particle is con-
fined to traverse through disordered clusters constructed
from the methods of percolation theory[3] with some occu-
pation probabilityp. For p,1 there is disagreement whether
particle states are localized or extended. In a review by
Mookerjeeet al. [4], they concluded that all states are local-
ized and transport is dominated by statistically exceptional
necklacelike resonant states. Daboulet al. [5], by calculating
the moments of distances between pairs of lattice sites using
series expansion methods, found evidence of a transition
from exponentially localized to extended or power-law de-
caying states with an energy-dependent occupation probabil-
ity thresholdpqsEd. Recent numerical studies of the scaling
of the conductanceg by Hałdaś et al. [6], however, found all

states to be localized and no indication of a localization-
delocalization transition. To properly interpret the results of
any calculation on the question of the existence of such a
transition as a function of the degree of disorderp, however,
we need to know the behavior of the transmittance in the
limit p→1. In this work we thus consider the limiting case
p=1 wherein all sites in the lattice are occupied. We are
going to show that even in this limit, the transport through
the lattice is very sensitive to the incident particle’s energy,
varying from complete transmission to complete reflection,
and also to the type of coupling between the lattice and the
input and output chains.

To determine the transport properties of a particle travers-
ing the square lattice, we attach semi-infinite chains to the
left and right sides of that lattice. Call the left semi-infinite
chain the input chain and the right semi-infinite chain the
output chain. The particle is made incident to the lattice via
the input chain. If the particle goes through the lattice, then it
exits via the output chain. Following the Landauer-Büttiker
formalism [7], the conductance of the system can then be
determined from the resulting transmission and reflection
amplitudes. Because of the semi-infinite chains, the corre-
sponding matrix equation resulting from Eq.(1) is also infi-
nite. Daboulet al. [5] recently described a method to trans-
form the infinitely sized Hamiltonian matrix in Eq.(1) into a
reduced matrixH8 that is finite and involves only the lattice
and its connections to the semi-infinite chains using an an-
satz. We are implementing this method in this work.

There are various ways of attaching the semi-infinite
chains to the square lattice. In this work we consider two
complimentary ways. One is by point-to-point contacts and
the other is by a busbar connection. In point-to-point con-
tacts the input chain is singly attached to the top-leftmost site
while the output chain is singly attached to the bottom-
rightmost site of the square lattice. In a busbar connection
the input chain is attached to all the sites in the left edge of
the lattice while the output chain is attached to all the sites in
the right edge of the lattice. This connection roughly corre-
sponds to a physical configuration where the contacts are
good conductors and are large enough to span a macroscopic
fraction of the sites along the edges of the lattice. The two
types of couplings we have chosen are complimentary. This
is because the single connections in point-to-point diagonal
contacts preserve the bipartite symmetry of the square lattice
while the multiple connections in the busbar connection de-
stroy that symmetry.
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Daboulet al. [5] proposed the following ansatz:

c−sn+1d = e−inq + reinq,

s2d
c+sn+1d = teinq,

where n=0,1,2, . . . . Thec−sn+1d represent components of
the wave function along the input chain and thec+sn+1d rep-
resent components along the output chain.c−1 and c+1 are
for sites in the input and output chains, respectively, that are
directly connected to the lattice. The ansatz restricts solu-
tions to Eq.(1) in the form of incident and reflected plane
waves along the input chain and transmitted plane waves
along the output chain. Because of this ansatz, the energy of
the incident particle is also restricted to be withinE=−2 and
E=2. The transmission and reflection coefficients can be de-
termined from thet and r in Eq. (2) by T= utu2 andR= ur u2.

Once the Hamiltonian matrix in Eq.(1) is reduced toH8,
the resulting problem can then be cast into the form of a
linear equationsH8−Edc=g, whereg is solely a function of
E. This linear equation can then be solved forc onceE is
chosen. We determinet andr from c by numerically solving
the above linear equation exactly—i.e., fromc=sH8−Ed−1g.
The matrixsH8−Ed is sparse and is numerically very close to
being singular, making the use of standard methods such as
the LU decomposition, wherein the matrix is decomposed
into a lower triangular matrixL and an upper triangular ma-
trix U, fail in some instances. As such, we implement the
technique called singular value decomposition[8] to care-
fully determine the inverse ofsH8−Ed.

Shown in Fig. 1 is a plot of the transmission coefficient
against the incident particle’s energy for a 10310 lattice
with point-to-point contacts to the input and output chains.
Also shown are the locations of the doubly degenerate eigen-
values of the isolated square lattice. An isolated lattice is one
where the input and output chains are not attached. The sys-
tem is highly transmitting except at some values of energy
where there are sharp dips and the system becomes highly
reflecting. Notice that the dips occur near the eigenvalues of
the isolated lattice. This phenomenon is analogous to reso-
nant tunneling[9] of an incident particle through, for ex-

ample, a double-barrier system. In such a system a peak in
particle transmission occurs whenever the incident particle’s
energy is the same as the energy of one of the well’s bound
states. In this work, however, although there is no tunneling
involved, we do see resonant reflection whenever the energy
of the incident particle falls near an eigenvalue of the iso-
lated lattice.

Notice as well that there is symmetry between theE.0
side and theE,0 side. The square lattice has bipartite sym-
metry and point-to-point contact connections preserve that
symmetry. Maintaining bipartite symmetry can in turn be
shown to ensure the symmetry inT aboutE=0.

As the size of the isolated lattice is increased the number
of its associated eigenvalues will also increase. For the lattice
with point-to-point contacts to the chains, we also see more
dips in the transmission coefficient as we increase the size of
the lattice. These dips are also located near the doubly de-
generate eigenvalues of the corresponding isolated square
lattice.

Shown in Figs. 2(a) and 2(b) are sample states that are
highly transmitting and highly reflecting, respectively, for a
particle traversing a 20320 lattice. The lattice is at thexy
plane. The input chain is attached to the site in the lattice
located at(1, 1). The output chain is attached to the site in
the lattice located at(20, 20). The z axis is the absolute
square of the components of the wave function at each cor-
responding lattice site,ucsx,ydu2. For the highly transmitting
state we see a diagonal line of nonzeroc going from the
input to the output chains. Though this is not always true for
all highly transmitting states, those with this feature are al-
ways highly transmitting. In the highly reflecting state, on
the other hand, we see large fluctuations and destructive in-
terference is manifest at the input and output sites.

Shown in Fig. 3 is the transmissionT versus the incident
particle’s energyE plot for a 10310 lattice with busbar con-
nections to the input and output chains. In contrast to the

FIG. 1. Plot of the transmission coefficientT against the inci-
dent particle’s energyE for a 10310 lattice with point-to-point
contacts to the input and output chains. The diamonds(L) are the
locations of the doubly degenerate eigenvalues of the isolated
square lattice.

FIG. 2. Sample states of a particle traversing a 20320 lattice
with point-to-point contacts to the input and output chains.(a)
Highly transmitting state withE=0.39. (b) Highly reflecting state
with E=0.41.
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case for point-to-point contacts, the system is mostly reflect-
ing but with sharp peaks in transmission at certain values of
the incident particle’s energy. Also shown in Fig. 3 are the
locations, as diamonds, of the doubly degenerate eigenvalues
of the corresponding isolated 10310 square lattice. Notice
that for theE,0 side the locations of the transmission peaks
are near the eigenvalues of the isolated lattice. This is similar
to the case with point-to-point contacts but instead of reso-
nant reflection we see resonant transmission. For theE.0
side, however, some of the peaks do not coincide with the
locations of the eigenvalues of the isolated lattice.

From the ansatz shown in Eq.(2), the wave vectorq of
the particle is related to its energy byE=2 cossqd, whereq
=2p /l. For negative energies, the particle’s wavelength is
constrained to be within43 ,l,4. For positive energies, the
wavelength should be within eitherl,

4
3 or l.4. Unlike

the case for point-to-point contacts, the lack of symmetry
between theE,0 andE.0 sides of the plot in Fig. 3 indi-
cates the significance of the incident particle’s wavelength
when undergoing through a busbar connection. Mathemati-
cally, the multiple connections of the busbar destroys the
bipartite symmetry of the square lattice and, consequently,
destroying the symmetry inT aboutE=0.

Let us call those sites at the sides of the lattice that are
directly connected to the input and output chains as belong-
ing to the input and output connection boundaries, respec-
tively. Because of the multiple connections in a busbar, de-
structive interference can occur at the connection boundaries,
resulting in a vanishingly small transmission through the lat-
tice. Some of the minima in transmission in Fig. 3 appear to
be consistent with rules analogous to optical-interference
minima-maxima conditions on the boundary. For example,
the condition that an integer number of wavelengths fit
within the boundary of a lattice of sizeL3L—i.e., the con-
dition L−1=nl—would suggest that certain values ofl re-
sult in destructive interference. This would include
l=1—i.e., E=2 from E=2 coss2p /ld—for all L and l=2
sE=−2d for all odd values ofL. In actuality, completely de-
structive interference occurs whenE=2 for all L.2 and also
whenE=−2 for all LÞ2 and 4. There are also several other
minima in T that are consistent with this condition. For ex-
ample, forL=5, l=4 sE=0d also satisfies the condition and

indeed it is close to a transmission minimum. ForL=6, l
=5/n sn=1,2,3,4d, corresponding toE<−1.62 and 0.62,
also satisfy the condition and they are also close to a minima
of T. In addition, atl=2 sE=−2d we actually observe com-
pletely constructive interference forL=2 and 4, whereL
−1=s1/2dl and L−1=s3/2dl, respectively, are satisfied.
These observations suggest strong influences of interference
on or near the connection boundaries on the overall transmis-
sion regarding the busbar connection though this boundary
interference effect is far from providing a satisfactory expla-
nation. In fact, since we have a discrete system with unit
lattice constant rather than a continuousslit as in an optical
system, it is not clear whyl=1 actually leads to destructive
interference rather than the opposite(except forL=2). Of
course, any influence of interference along the connection
boundary must only be a part of the story since interference
actually occurs throughout the bulk of the system(on most
of which l is not even well defined) and since it must also
compete with resonant transmission and reflection whenever
the values of the incident particle’s energies at the input
chain fall near the eigenvalues of the isolated cluster.

Two sample states for a particle traversing a 20320 lat-
tice with busbar connections to the input and output chains
are shown in Fig. 4. The busbars are connected at they=1
andy=20 sides of the lattice. Shown in Fig. 4(a) is a highly
transmitting state while Fig. 4(b) is a highly reflecting state.
Notice that the difference in amplitudes between the states is
several orders of magnitudes. In Fig. 4(b) strong destructive
interference occurs in such a way that the statec nearly
vanishes within the lattice.

In conclusion, we find resonant transmission and reflec-
tion in the transport of a particle through finite square lattices
whenever the particle’s energy is near a doubly degenerate
eigenvalue of the isolated lattice. The way the input and
output chains are attached to the lattice influences the trans-
port behavior of the incident particle. For point-to-point con-
tacts particle transport is mostly transmitting but with trans-

FIG. 3. Plot of T againstE for a 10310 lattice with busbar
connections to the input and output chains. The diamonds(L) are
again the locations of the doubly degenerate eigenvalues of the
isolated square lattice.

FIG. 4. Sample states of a particle traversing a 20320 lattice
with busbar connections.(a) Highly transmitting state withE
=0.017.(b) Highly reflecting state withE=0.051.
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mission dips whenever resonance occurs. For busbar
connections particle transport is mostly reflecting with trans-
mission peaks whenever resonance also occurs. There are,
however, peaks in transmission that cannot be accounted for
by resonance. These peaks are the results of interference
originating from the multiple connections in a busbar. The
sharp fluctuations of the conductance in thep=1 limit, both
as a function of the energyE of the incident particle and the
type of coupling chosen between the lattice and chains, will
definitely affect the nature of transport whenever disorder is

introduced, especially in the weak-disorder limit. However,
whether these fluctuations have a significant effect on the
existence or nature of the disputed localized-to-delocalized
transition or whether they only affect transport at the weak
disorder limit still remains to be explored. We are currently
conducting such a study.
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